Dynamics of Eye-Position Signals in the Dorsal Visual System

نویسندگان

  • Adam P. Morris
  • Michael Kubischik
  • Klaus-Peter Hoffmann
  • Bart Krekelberg
  • Frank Bremmer
چکیده

BACKGROUND Many visual areas of the primate brain contain signals related to the current position of the eyes in the orbit. These cortical eye-position signals are thought to underlie the transformation of retinal input-which changes with every eye movement-into a stable representation of visual space. For this coding scheme to work, such signals would need to be updated fast enough to keep up with the eye during normal exploratory behavior. We examined the dynamics of cortical eye-position signals in four dorsal visual areas of the macaque brain: the lateral and ventral intraparietal areas (LIP; VIP), the middle temporal area (MT), and the medial-superior temporal area (MST). We recorded extracellular activity of single neurons while the animal performed sequences of fixations and saccades in darkness. RESULTS The data show that eye-position signals are updated predictively, such that the representation shifts in the direction of a saccade prior to (<100 ms) the actual eye movement. Despite this early start, eye-position signals remain inaccurate until shortly after (10-150 ms) the eye movement. By using simulated behavioral experiments, we show that this brief misrepresentation of eye position provides a neural explanation for the psychophysical phenomenon of perisaccadic mislocalization, in which observers misperceive the positions of visual targets flashed around the time of saccadic eye movements. CONCLUSIONS Together, these results suggest that eye-position signals in the dorsal visual system are updated rapidly across eye movements and play a direct role in perceptual localization, even when they are erroneous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dorsal Visual System Predicts Future and Remembers Past Eye Position

Eye movements are essential to primate vision but introduce potentially disruptive displacements of the retinal image. To maintain stable vision, the brain is thought to rely on neurons that carry both visual signals and information about the current direction of gaze in their firing rates. We have shown previously that these neurons provide an accurate representation of eye position during fix...

متن کامل

Eye-position signals in the dorsal visual system are accurate and precise on short timescales.

Eye-position signals (EPS) are found throughout the primate visual system and are thought to provide a mechanism for representing spatial locations in a manner that is robust to changes in eye position. It remains unknown, however, whether cortical EPS (also known as "gain fields") have the necessary spatial and temporal characteristics to fulfill their purported computational roles. To quantif...

متن کامل

Recovering stimulus locations using populations of eye-position modulated neurons in dorsal and ventral visual streams of non-human primates

We recorded visual responses while monkeys fixated the same target at different gaze angles, both dorsally (lateral intraparietal cortex, LIP) and ventrally (anterior inferotemporal cortex, AIT). While eye-position modulations occurred in both areas, they were both more frequent and stronger in LIP neurons. We used an intrinsic population decoding technique, multidimensional scaling (MDS), to r...

متن کامل

Using Eye Movement Analysis to Study Auditory Effects on Visual Memory Recall

Recent studies in affective computing are focused on sensing human cognitive context using biosignals. In this study, electrooculography (EOG) was utilized to investigate memory recall accessibility via eye movement patterns. 12 subjects were participated in our experiment wherein pictures from four categories were presented. Each category contained nine pictures of which three were presented t...

متن کامل

Improvement of position measurement for 6R robot using magnetic encoder AS5045

Recording the variation of joint angles as a feedback to the control unit is frequent in articulated arms. In this paper, magnetic sensor AS5045, which is a contactless encoder, is employed to measure joint angles of 6R robot and the performance of that is examined. The sensor has a low volume, two digital outputs and provides a high resolution measurement for users; furthermore its zero positi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012